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The s e l f - s i m i l a r  p rob lem of the nons ta t ionary  motion of a plane l a y e r  of m a t e r i a l  in which 
energy  f rom an ex te rna l  source  is  r e l e a s e d  for  values  of the flux densi ty  q0 on the boundary 
which a r e  cons tant  in t ime  is cons ide red .  The s e l f - s i m i l a r  v a r i a b l e  is  ~ = m / t ,  where  m is 
the Lagrang ian  m a s s  coord ina te  and t is  the t ime .  The c h a r a c t e r i s t i c  values  of the ve loc i ty ,  
densi ty ,  and p r e s s u r e  do not va ry  with t ime .  Fo r  a s e l f - s i m i l a r  p rob lem the energy  flux den- 
s i ty  q must  a l so  depend only on the s e l f - s i m i l a r  va r i ab le .  In th is  case  q (p)  can be an a r -  
b i t r a r y  function of i ts  a rgumen t  and can be given by a table .  Examples  a r e  p re sen ted  of a c -  
tual  phys ica l  p r o c e s s e s  in which the m a s s  of the e n e r g y - r e l e a s e  zone i n c r e a s e s  l i n e a r l y  with 
t ime.  The equation of s ta te  can have an a r b i t r a r y  form,  including spec i f i ca t ion  by a tab le .  
The gaseous  s ta te  of m a t t e r  for an a r b i t r a r y  va r i ab l e  ad iaba t ic  exponent,  the condensed s ta te ,  
and a two-phase  s ta te  can be desc r ibed .  A solut ion of the s e l f - s i m i l a r  p rob lem is p r e s e n t e d  
for the heat ing of a h a l f - s p a c e  bounded by a vacuum for a c e r t a i n  spec i f ic  equation of s ta te  
and va r ious  flux dens i t i e s  q0 and ve loc i t i e s  M of the advance of the e n e r g y - r e l e a s e  zone. 

1. We cons ide r  the plane nons ta t ionary  motion of a m a t e r i a l  containing d i s t r ibu ted  energy  s o u r c e s  in 
the hydrodynamic  approx imat ion .  The co r r e spond ing  s y s t e m  of equations has  the fo rm 

Ou Op av au 
aS- + ~ = 0 ;  at o.~ O; (1.1) 

Oe Ov 
a--7 + P ~  = ] ,  

where  u is  the veloci ty ,  p is the p r e s s u r e ,  v is  the speci f ic  volume (v = l i p ,  where  p is the densi ty) ,  e is 
the in te rva l  energy per  unit m a s s ,  t is the t ime,  m is the Lagrangian  m a s s  coordina te ,  and f is the energy  
r e l e a s e  ( f  �9 0) or loss  ( f  < 0) per  unit m a s s  per  unit t ime.  The sy s t em (1.1) must  be supplemented by the 
equation of s ta te  

p=p(e, p), (1.2) 

which can have an a r b i t r a r y  form,  including spec i f ica t ion  by a table .  In the spec ia l  c a se  of ma t t e r  in ' the  
gaseous s ta te ,  

p=ep( v - -  t), (1.3) 

where  T is the ad iaba t ic  exponent which, in turn,  can be a function of e and p.  The quantity f is  r e l a t e d  
to the energy  flux densi ty  q by the r e l a t ion  

l = - - O q / O m .  (1.4) 
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To d e t e r m i n e  f or q i t  i' ~ecessa ry  to specify the e n e r g y - t r a n s p o r t  m e c h a n i s m .  We a s s u m e  that  the t i m e  
dependence  of the flux dens i ty  through the m a s s  has  the spec ia l  f o rm 

q =qi(iL) = qoq'(~), ~t = -K" (1.5) 

H e r e  q0 is the flux dens i ty  a t  the point  m = 0 and  is cons t an t  in t ime .  Equa t ion  (1.4) takes  the fo rm 

.F dq" 
! =-i-' F =  --qo-~K. 

Hencefo r th  we a s s u m e  that  F ~ 0 a s  m ~ :~ r162 and that  F (~) fa l l s  off f a s t  enough so that  i t s  i n t eg ra l  with 
r e s p e c t  to g is f ini te .  

We a s s u m e  that  a t  t ime  t = 0 the m a t e r i a l  in each of the r e g i o n s  m > 0 and  m < 0 is un i fo rmly  heated  
and  has  a c o n s t a n t  dens i ty  independent ly  of whe ther  it  is  a t  r e s t  or  mov ing  with a cons t an t  ve loc i ty :  

e--e0, P=P0, u=uo, m >  0; 
e=ex, P=Pl,  u=ul, m <  O. 

If q -  0 e v e r y w h e r e ,  i .e . ,  if  t h e r e  is  no ene rgy  r e l e a s e  in the m a t e r i a l ,  the p r o b l e m  unde r  c o n s i d e r a t i o n  is 
an  o r d i n a r y  p r o b l e m  of the decay of an  a r b i t r a r y  d i scon t inu i ty  [1]. 

In the spec ia l  c a s e  when the m a t e r i a l  is bounded by a vacuum only the h a l f - s p a c e  m > 0 is  c ons ide r ed ;  
on i t s  boundary  the condi t ion  

p=O, re=O, 

i s  sa t i s f i ed .  The o ther  l i m i t i n g  c a s e  is  the mot ion  of a p i s ton  with a given veIoci ty  u (0, t) = Up = coas t .  In 
the gene ra l  case  the mot ion  develops c lose  to the boundary  be tween  two med ia ,  and shock waves ,  c o m p r e s -  
s ion or r a r e f a c t i o n  waves ,  a r e  propaga ted  f rom this  boundary  through the m a t e r i a l .  As m --* ~r we have the 
u n p e r t u r b e d  s ta te :  e - - e 0 ,  V - v0, u - -  u0, and  as  m - - - o o w e a l s o h a v e  an u n p e r t u r b e d  reg ion :  e - -  et, v - -  

V l ,  U - ' ~  U 1 .  

The equat ion of s ta te  can  be d i f fe ren t  in the r e g i o n s  m > 0 and m < 0 if d i f f e ren t  m a t e r i a l s  a r e  in con-  
tact  a t  m = 0 or  if t he r e  is one m a t e r i a l  in d i f fe ren t  phys ica l  s ta tes  in these  r e g i o n s .  The equat ion  of s ta te  
can a l so  change  a long  any l ines  m = Mst.  Such l i nes  can be shock waves  p ropaga t ing  with cons t an t  ve loc i ty  
M s on which the phys ica l  s ta te  of the m a t e r i a l  or i ts  c h e m i c a l  compos i t i on  v a r i e s  s ign i f ican t ly .  In p a r t i c u -  
l a r ,  the ad iaba t ic  exponent  T can  be changed as  a consequence  of d i s soc i a t i on  or ion iza t ion .  When t he r e  is 
no ene rgy  r e l e a s e  anywhere  except  in an  inf in i te ly  n a r r o w  zone behind  the f ron t  of a shock wave mov ing  
with the cons t an t  "ve loc i ty"  M s f r o m  the point  m = 0, i .e . ,  F = ~(g - ~ t s ) ,  we have to deal  with an  o r d i n a r y  
detonat ion.  It  is known that  the p r o b l e m  of a de tonat ion  wave is s e l f - s i m i l a r  for  an  a r b i t r a r y  equat ion  of 

s t a te  [2]. 

The p r o b l e m s  of the decay of an  a r b i t r a r y  d i scon t inu i ty  in a m a t e r i a l  with a c e r t a i n  spec ia l  e n e r g y -  

r e l e a s e  law (1.4) is  a l so  s e l f - s i m i l a r :  

- m 
e = e ( ~ ,  p = p (~) ,  v = v (t~), u = u (~) ,  ~ = 5-" 

We note tha t  the c h a r a c t e r i s t i c  va lues  of the i n t e r n a l  ene rgy ,  dens i ty ,  and p r e s s u r e  a r e  cons t an t  in t ime ,  
which e n s u r e s  s e l f - s i m i l a r i t y  for an a r b i t r a r y  equat ion of s ta te  (1.2). 

Af te r  t r a n s f o r m i n g  to the s e l f - s i m i l a r  v a r i a b l e  g Eqs ,  (1.1) have the fo rm 

du dp dv dlt 
- t + ~ + ~ = o ;  t ~ N + ~ = o ;  (1.6) 

and  a r e  supp lemen ted  by Eq. (1.2). 

~ ( ~ .  d~,~ 
, p ~ )  = F(,~) (1.7) 
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We note that the velocity u can be eliminated from (1.6) to give 

p2 dv dp 
-~ ~ ---- 0. (1.8) 

The problem is par t icular ly  simple to analyze if the energy re lease  has the form 

F--- AS(~ -- ~),  

where 6 is the Dirac delta function and #v  is the coordinate of the "deflagration" front which does not 
necessar i ly  coincide with the shock wave and must  be specified on the basis  of fur ther  physieal  considera t ions .  
In this case  the pa rame te r s  ahead of the ene rgy - r e l ea se  zone a re  re la ted  to those behind it by a conse rva-  
tion law, and the motion outside the e n e r g y - r e l e a s e  zone is adiabatic. This situation a r i ses ,  for example, 
when intense fluxes of optical radiat ion act  on condensed opaque mater ia l  [3,4]. For  relat ively low flux den- 
sit ies the vapors formed are t ransparent  to the incident radiation, while the radiation penetrates  only small  
distances in condensed matter .  In the limit it can be assumed that an infinitely narrow ene rgy - r e l ea se  zone 
advances together with the evaporation wave, an infinitely narrow phase- t rans i t ion  zone. For  a constant 
flux density and completely t ransparen t  vapors  the evaporation wave moves with constant velocity, and be- 
hind the wave the Jou_guet rule is satisfied (in general,  this i snot  obligatory [5, 6]). In the examples p r e s -  
ented below only volumetric  energy re l ease  will be considered.  

This problem was discussed in [7, 8] for the special  case  of the escape of an ideal gas with 7 = const  
into a vacuum when the function F (#) has the special  form 

F=A~ -=. (1.9) 

It was assumed that the vapor d isperses  into the vacuum behind a cer ta in  evaporation surface moving with 
a constant velocity within the mater ia l .  

The following evaporation conditions were formulated in [7]: the evaporation surface is at the point 
m v (t), where the tempera ture  in the condensed mater ia l  rose  f rom the initial value to a cer ta in  evaporation 
tempera ture ,  and energy equal to the heat of vaporation Qv was l iberated.  An analytic solution of sys tem 
{1.7), (1.8) was found in [7] for the flow of a gas. In this calculation the Jouguet rule  was used without any 
justification. It was pointed out in [8] that this is a par t icular  solution of the problem under considerat ion 
and that other distributions of pa ramete r s  a re  possible, in part icular ,  discontinuous distributions with a 
shock wave at a cer ta in  distance f rom the evaporation wave in the gaseous region. In this case  the Jouguet 
rule is not satisfied on the evaporation surface.  In [7, 8] the evaporation surface  is understood to be an in- 
finitely narrow zone whose existence for (1.9)C~is not justified. The introduction of such a discontinuity (con- 
ventional evaporation boundary) does not have any special advantages aside f rom the possibility o f  using 
only the simple equation of state {1.3) with T = const, since it is natural to generalize such a problem [and, 
moreover ,  for an a rb i t r a ry  function F (#) and not just for (1.9)] to the case of an a rb i t r a ry  equation of state 
including the equation for a two-phase state. The latter enables us to consider  the s t ructure  of the phase-  
t ransi t ion zone .  We note that at p res su res  of the order  of the cr i t ica l  p r e s su re s  (in the van der Waa~s 
sense) and higher,  regions with different phases cannot generally be r igorous ly  delimited. 

We present  an example of a physical p rocess  in which the ene rgy- re l ease  zone can advance with con- 
stant velocity f rom the boundary of the mater ia l  into its interior .  

Suppose the mater ia l  is heated by radiat ion which has a continuous spect rum,  and that the spect ra l  
absorption coefficient ~4r is the following function of the photon energy r the internal energy e, and the den- 
sity p : 

•  ( 1 , i 0 )  

In this case we assume that the function K charac te r iz ing  the change in t ransparency  of the mater ia l  with 
tempera ture  and density is an a rb i t r a ry  function of its arguments .  In general,  the variables  in (1.10) can- 
not be separated.  However, this may be possible to a sufficient accuracy  in a cer ta in  range of t empera tures  
and densities charac te r i s t i c  of the problem under discussion and in a cer tain (the most  important) spectra l  
range.  In par t icular ,  this occurs  for radiation which is hard enough so that the average photon energy is 
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considerably higher than the f i rs t  ionization potentials; i .e . ,  the energy is absorbed in ra the r  deep atomic 
shells.  Then the heating of the mater ia l  to the tempera ture  of the phase transit ion,  its evaporation, and 
even its ionization, if not too strong, does not lead to a significant change in optical (in the broad sense of 
the word) proper t ies  of the mater ia l  and the function K is constant. A power law dependence of ~ on ~ is 
charac te r i s t ic  for the indicated range of photon energies  [9, 10] with a typical value of s = 3. 

If the form of the spect rum remains  unchanged, for example, Planckian, and the charac te r i s t i c  energy 
of the source photons increases  with time according to the power law 

~,  ~ B  t z/~ , 

the charac te r i s t ic  absorpt ion coefficient ~ ,  decreases  with t ime and the charac te r i s t i c  mass  of heated 
mater ia l  increases  l inearly with time. 

We note that the law of energy re lease  in the mass  in the region where most  of the energy is l iberated 
(q/q0 > 0.1-0.2) is described in the f i r s t  crude approximation by a simple exponentially decreas ing function. 
This means that in this region the absorption coefficient at  various depths, averaged over the spectrum, 
does not differ too strongly f rom the re fe rence  value calculated f rom the spec t rum for an effective optical 
thickness of the order  of unity [11]. 

We consider  another example. Recently g r ea t  interest  has been aroused by experiments  on the pulsed 
heating of mater ia l  using powerful e lectron acce le ra to r s  [12]. If we r e s t r i c t  ourse lves  to re la t ively dense 
mater ia l ,  the energy re lease  in it occurs  mainly as  a resu l t  of ionization losses ,  but the scat ter ing of the 
e lectron beam must  be taken into account also. In the propagation p rocess  the energy of the electrons 
decreases  continuously f rom the initial value ~0. The resul t s  of calculations of corresponding problems 
[13-15] obtained by the Monte Carlo method for a fixed ra ther  than a broad  range of initial e lectron ener -  
gies can be writ ten in the form 

q -~ %q'  (z),  z = K m e U ' .  (1.1i) 

The function q'(z) is commonly given in tabular form. Suppose the acce le ra to r  voltage and the energy of 
the incident e lect rons  e0 increase  with t ime according to the power law 

so=ct ~, n=l / s .  

Then the energy re lease  sat isf ies condition (1.5): the mass  heated by e lect rons  increases  l i n e a r l y  with 
time. We note that when n ~ 1/s  and/or  q0 ~ const, and e* var ies  according to a power law, se l f - s imi la r  
problems of the type [16, 17] can be formulated,  but not for an a rb i t r a ry  equation of state. When condition 
(1.5) is not satisfied, the se l f - s imi la r  problem under considerat ion can nevertheless  be used to investigate 
the effect of both the equation of state and the  law of energy re lease  in the mass  on the charac te r i s t i cs  of 
the motion. 

2. We consider  the solution of the se l f - s imi la r  problem using an equation of state which approximately 
descr ibes  both the gaseous and condensed States: 

p =Px(P) + P[e - -  ex(p) lr, 

where we a s sume  the dependence of the Gr~ineisen constant F on e and p, and the form of the "e las t ic"  
("cold") components of p ressure  and internal energy are  the same for various mater ia ls  (materials  of a 
single type descr ibed by a universal  equation of state): 

2 V 

2 V  
p~ = B p  v (p), e~ = coe~ (p), O v = P/Oo, c~ = Bye  = B/po .  

Here B is the butk modulus and P0 is the normal  density. We assume that the variat ion of flux density q 
through the mater ia l  is not a l tered by a change in the charac ter i s t ic  "velocity" M of propagation of the en- 
e rgy - r e l ea se  zone in the mater ia l :  

q = q  ---- = �9 
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We m a k e  a change  of v a r i a b l e s ,  

V 9 e = e  c5, p - - - - B p  v ,  ~U=Co uv ,  

P = P"/Po, q = poc2q v,_ ~t = poco>V. 

It is  obv ious  tha t  the  so lu t ion  of the p r o b l e m  in the  g iven  f o r m  pV (pV) and  q'(/~ ' / M  ~ wi.ll depend  only on the  
p a r a m e t e r s  M ~ and  q0: 

MO = 3/ qo = q_A_o. 
poco' Poc~ 

We p r e s e n t  the  so lu t i on  for  an  e n e r g y  r e l e a s e  d e s c r i b e d  by  the  v e r y  s i m p l e  law 

�9 ~tv 
q ' =  exp ( - -  ~ ) ,  (2.1) 

and the  co ld  c o m p o n e n t s  of p r e s s u r e  and  e n e r g y ,  a s  in [18], a r e  g iven  by the s i m p l e  a n a l y t i c  e x p r e s s i o n s  

1 V n - -  k p n - - i  p i t - - !  
p V _ - ~ _ ~ [ p ~ _ p q ;  e x = ( ~ _ l ) ( ~ _ ~ )  + ~ - ~  k - - i "  

H e r e  for  c o n v e n i e n c e  in w r i t i n g  the  s u p e r s c r i p t  V on (pv) h a s  been  o m i t t e d .  In the  s p e c i f i c  v a r i a n t s  d e -  
s c r i b e d  be low n = 3, k = 2, F = 1. The  s o l u t i o n s  was  c o n s t r u c t e d  for  a wide r a n g e  of v a l u e s  of  the  p a r a m e -  
t e r s  M ~ and q0, n a m e l y ,  10 -4 <- q0 <- 104, and  0.1 - M ~ <- 10. A c c o r d i n g  to (1.5) the h e a t e d  m a s s  is  in -  
f i n i t e s i m a l  a s  t - - -  0. In the  e x a m p l e s  c o n s i d e r e d  above  tlae m a s s  a c t u a l l y  r e m a i n s  f in i te ;  Eqs .  (1.10) and  
(1.11) a r e  not  v a l i d  for  too s m a l l  e.  N e v e r t h e l e s s ,  for  s m a l l  t h i c k n e s s e s  the  e n e r g y - r e l e a s e  z o n e s  a r e  g e n t  
e r a l l y  b r o a d e n e d  by hea t  conduc t ion .  T h e r e f o r e ,  u s ing  the s c h e m e  in [18] a p r o b l e m  which is  not  s e l f - s i m -  
i l a r  w a s  c a l c u l a t e d  wi th  t he  e n e r g y - r e l e a s e  law 

( ./---- exp - -  .Hit ~ n, o 

which goes over into (2.1) as t ~ ~. 

Calculations showed that for t >> m0/M the solution reaches the self-similar  regime. This is easy to 
see from Fig. 1 which shows the pressure pv as a function of the self-similar  coordinate ~v at different 
times for q0 = 0.5 and M 0 = 0.5. Curves 1-4 correspond to t = 11, 77, 297, and 1257. 

F i g u r e  2 shows  p :  a s  a funct ion  of ~tv for  the  v a l u e s  of q0 no ted  on the  c u r v e s  ob ta ined  by so lv ing  
the s e l f - s i m i l a r  p r o b l e m  for  iV[ ~ = 1 /6 .  The  shock  wave ,  which  i s  a sound  wave fo r  s m a l l  q0, i s  c l e a r l y  

791 



', ,w \ N~ I 
t M_\i  t 

0 
- 4  -2 0 2 4 

Fig. 3 

visible. Its front is at the point ~tv=l, i.e., at m = P0C0 t. For  large 
q0 the shock wave is strong. The open curve rep resen t s  the resu l t s  of 
scaling the value of the maximum pressu re  on the shock front fo r  large 
q0 according to the law which holds for a pure gaseous equation of state, 
i.e., when the quantities B andC0are  unessential  pa ramete r s .  We ob- 
tain this law f rom qualitative arguments ,  although it can be found purely 
formally also. The charac te r i s t i c  density of r e l eased  energy G in the 
ene rgy- re l ease  zone remains  constant at  all t imes.  In se l f - s imi la r  
motion a constant fract ion of the re leased  energy is t ransformed into 
kinetic energy; i.e., u ~ q~-~. The value of the maximum pressu re  can 
be est imated f rom the condition Pm ~ Mu ~ q q ~ 0  M, f rom which it follows 
that pm/qo " r 

Figure 3 shows the dependence of pm/q0 on q~176 for var ious M ~ 
The values of M ~ a re  marked on the curves .  For  large qO all the cu rves  

coincide, which is in accord  with the above arguments .  For  small  q0 the ra t io  pro/q0 reaches  a constant  
value. The presence of a maximum of pro/q0 should be noted. This resu l t  can also be obtained by simpli-  
fying the whole problem. 

3. We find the velocity of sound for an a rb i t r a ry  equation of state p = p (e, v). We have the natural  
re la t ion 

8p I 
(3.1) 

For  adiabatic flow 

It follows f rom t3.1)and (3.2) that 

~e 1 = ~s --p. (3i2) 

dp 
p ~ c  ~ -= - -  " ~  ~ = P P e  - -  P , .  

We t rans fo rm to a sys tem of se l f - s imi la r  equations. By using (3.1), f rom (1.8) we obtain 

(3.3) 

dv ~ .  de 
( ~  + P~) ~ P, 7g = o. (3.4) 

Using (3.3), f rom (3.4) and (1.7) we find 

de F I ,  ' - (p-'~' - pp , )  ] 
d--ff = r~ t ~r : - -o~~ '  " ( 3 . 5 )  

We note that for the equation of state of an ideal gas (1.3) and for (3.1) when F = T - 1  = const we have 

' 

We now consider  the case of relat ively low tempera tures  when Pc var ies  only slightly f rom its value Poc0 
under normal  conditions and the p ressu re  p is small  in compar ison with poe 2. Consequently, we have 
P2e2-PPe ~ P0c2" When M ~ << 1 or M << P0C 0 ("subsonic" propagation of the ene rgy- re lease  zone) most  of 
the energy re lease  occurs  in the region ~ << P0c 0 or ~v <<]: Therefore  in the f i rs t  approximation the ex- 
press ion in square brackets  on the r ight-hand side of Eq. (3.5) can be set equal to unity, giving 

de 
- -  ~t ~-~ = F .  (3 .6)  
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Thus  the m o t i o n  h a s  p r a c t i c a l l y  no e f f ec t  on the  m a g n i t u d e  of the  i n t e r n a l  e n e r g y ;  e i s  g iven  by  the  s a m e  
e x p r e s s i o n  a s  if  dv/d~t = 0 of if  v = cons t .  Subs t i t u t i ng  (3.6) into (3.4) and  us ing  the s a m e  s i m p l i f y i n g  a s -  
s u m p t i o n s  a s  above ,  we ob ta in  

I ! ~ F ( ? - -  ~) 

If we c o n s i d e r  f o r m s  of e n e r g y - r e l e a s e  l aws  fo r  which  F i s  n e g l i g i b l y  s m a l l  in the  r e g i o n  I~ ~ P0C0, we ob-  
t a i n  

x 

OoC~ 'o 

H e r e  we t r a n s f o r m  to the  c o o r d i n a t e  x = p / M .  F o r  q '  = exp ( - x )  we ob ta in  

H(x) = t - -  (x -F t )exp(--x) .  (3.8) 

C a l c u l a t i o n s  show tha t  t h i s  e x p r e s s i o n  d e s c r i b e s  the  p r e s s u r e  p r o f i l e  f a i r l y  we l l  up to the  shock wave  
F i g u r e  4 shows  the  p r e s s u r e  p and the  s p e c i f i c  v o l u m e  v a s  func t ions  of  the  s e l f - s i m i l a r  v a r i a b l e  f o r  M ~ = 
1/6 and q0 = 10-4. The  d a s h e d - d o t  c u r v e  i s  fo r  Eqs .  (3.7) and  (3.8), and  the  s o l i d  c u r v e  r e p r e s e n t s  the  r e -  
s u l t s  of a n u m e r i c a l  c a l c u l a t i o n .  I t  i s  c l e a r  tha t  the  d i f f e r e n c e  i s  a p p r e c i a b l e  on ly  c l o s e  to  the  shock  f ron t .  
We note tha t  the  d e n s i t y  i s  e v e r y w h e r e  only s l i g h t l y  d i f f e r en t  f r o m  n o r m a l .  

I t  fo l lows  f r o m  (3.7) t ha t  fo r  s m a l l  q0, i . e . ,  in the  t h e r m o e l a s t i c  r e g i o n ,  the p r e s s u r e  Pm is  p r o p o r -  
t i ona l  to q0, w h e r e  for  M ~ < 1 we ob t a in  an  i n c r e a s e  of  Pm with M ~ in a g r e e m e n t  wi th  the  da ta  shown in 
F ig .  3. 

When M ~ >> 1 we aga in  use  q u a l i t a t i v e  e s t i m a t e s .  If  the m a s s  v e l o c i t y  of p r o p a g a t i o n  of the  e n e r g y -  
r e l e a s e  zone i s  v e r y  l a r g e ,  the  m o t i o n  h a s  p r a c t i c a l l y  no e f f ec t  and  the d e n s i t y  does  not  change .  The  e n e r -  
gy qot r e l e a s e d  in a l a y e r  of t h i c k n e s s  Mt /p  0 l e a d s  to a p r e s s u r e  Pm of  the  o r d e r  d0P0 (T - 1 ) / M ;  i . e . ,  
pm/q0  ~ I / M  and,  c o n s e q u e n t l y ,  for  l a r g e  M ~ the  va lue  of Pm/q0 d e c r e a s e s  wi th  i n c r e a s i n g  M. A c c o r d i n g l y ,  
t h e r e  i s  a c e r t a i n  " o p t i m u m "  va lue  of M for  which the p r e s s u r e  is  m a x i m u m .  T h i s  a l s o  a g r e e s  wi th  the  
da ta  of F ig .  3. 

S ince  the  p r o b l e m  i s  s e l f - s i m i l a r ,  a l l  p a r t i c l e s  of the  m a t e r i a l  fo l low the s a m e  path  on the s t a t e  
d i a g r a m .  F i g u r e  5 shows  c e r t a i n  r e s u l t s  of n u m e r i c a l  so lu t i ons  in the  c o o r d i n a t e s  pV, pV for  v a r i o u s  q0 
and M ~ = 1 /6 .  F o r  o t h e r  M ~ the p i c t u r e  i s  q u a l i t a t i v e l y  the  s a m e .  It  is  c l e a r  tha t  a t  the  beg inn ing  t h e r e  i s  
a s h a r p  r i s e  in p r e s s u r e  f r o m  the i n i t i a l  po in t  p = 0, p = P0 a long  the c u r v e  c l o s e  to  the  shock a d i a b a t  of 
the co ld  m a t e r i a l ,  and  subsequen t  r e l i e f  for  con t inued  e n e r g y  r e l e a s e .  F o r  a d e c r e a s e  in the  f lux d e n s i t y  
q0 to v a l u e s  c o r r e s p o n d i n g  to q0 ~ 0.2 the  c u r v e s  fo r  p (p) p a s s  be low the c r i t i c a l  po in t  Pc, Pc t h rough  the 
t w o - p h a s e  r e g i o n  D. In t h i s  c a s e  they  i n t e r s e c  t t h i s  b o u n d a r y  t w i c e  (points  a and  b fo r  the  c u r v e  q0 = 0.1).  
B e t w e e n  such po in t s  t h e r e  i s  a g r a d u a l  q u a s i e q u i l i b r i u m  v o l u m e t r i c  e v a p o r a t i o n  and  an  i n c r e a s e  in the  
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vapor  f rac t ion  ~/ f rom ~? = 0 (condensed mat te r )  to ~? = 1 (completely vapor ized  mat te r ) .  For  compar i son ,  
the dashed-dot  cu rves  of Fig. 5 show r e l i e f  adiabats  [18]. It is c l ea r  that  in s e l f - s i m i l a r  flow with heating 
the behavior  is ve ry  different  f r o m  adiabat ic ,  pa r t i cu la r ly  outside reg ion  D, and the p r e s s u r e  d e c r e a s e s  
much m o r e  slowly. In order  that  the ma te r i a l  be evapora ted  initially,  i .e . ,  in o rder  that  the curve  for  p (p) 
fal l  into region D, the m a t e r i a l  mus t  expand. Thus,  in spite of poss ib le  s t rong  heat ing of m a t e r i a l  c lose  to 
the shock front  t rue  evaporat ion can occur  only in the r e l i e f  reg ion  and the shock wave can move in the con- 
densed ma te r i a l .  For  la rge  q0 the curve  for  p (P) pa s se s  above the c r i t i ca l  point and the concept  of evapo ra -  
tion cannot be applied at  any definite points. 

In conclusion, we note that  condensed ma t t e r  has  been t r ea t ed  as a fluid. The p rob lem under consid-  
e ra t ion  can be genera l ized  by introducing both liquid and solid phases  and a s t r e s s  t ensor  instead of a s in-  
gle p r e s s u r e .  
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